Project

Mixed Use Development, 1-4 East Road, East Road, Dublin

Report Title

Infrastructure Design Report

Client

Glenveagh

APRIL 2019

Proposed Mixed Use Development at 1-4 East Road, East Wall, Dublin 3
170200
Infrastructure Design Report
170200-Rep-002
Nick Fenner
Dan Reilly
April 2019
Planning Client Architect Planning Consultant File

DBFL Consulting Engineers Ormond House Upper Ormond Quay Dublin 7

Tel01 4004000Fax01 4004050Emailinfo@dbfl.ieWebwww.dbfl.ie

Revision	Issue Date	Description	Prepared	Reviewed	Approved
-	13/12/18	Pre-planning	IGR	NJF	DJR
A	23/04/19	Planning	NJF	DJR	DJR

TABLE OF CONTENTS

1.1 Background 1 1.2 Location & Topography 1 1.3 Existing Ground Conditions 2 1.4 Proposed Development 3 2.0 FLOOD RISK 4 3.0 SITE ACCESS AND ROAD LAYOUT 5 3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16	1.0	INTRODUCTION1
1.2 Location & Topography 1 1.3 Existing Ground Conditions 2 1.4 Proposed Development 3 2.0 FLOOD RISK 4 3.0 SITE ACCESS AND ROAD LAYOUT 5 3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0	1.1	Background1
1.3 Existing Ground Conditions 2 1.4 Proposed Development 3 2.0 FLOOD RISK 4 3.0 SITE ACCESS AND ROAD LAYOUT 5 3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy. 9 5.2 Surface Water Strategy. 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0	1.2	Location & Topography 1
1.4 Proposed Development	1.3	Existing Ground Conditions2
2.0 FLOOD RISK. 4 3.0 SITE ACCESS AND ROAD LAYOUT 5 3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 <	1.4	Proposed Development
3.0 SITE ACCESS AND ROAD LAYOUT 5 3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 6.1 <th>2.0</th> <th>FLOOD RISK4</th>	2.0	FLOOD RISK4
3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1<	30	SITE ACCESS AND ROAD LAYOUT 5
3.1 Existing Access 5 3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1<	0.0	
3.2 Proposed Access & East Road Signalised Junction 5 3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 6.1 Proposed Foul DISTRIBUTION 22 7.1 Proposed Water main and Supply 22	3.1	Existing Access 5
3.3 Proposed Parking 6 3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.	3.2	Proposed Access & East Road Signalised Junction
3.4 Vehicle Tracking 6 4.0 EXISTING SERVICES AND UTILITIES 7 4.1 General 7 4.2 Surface Water Drainage 7 4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy. 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	3.3	Proposed Parking6
4.0 EXISTING SERVICES AND UTILITIES	3.4	Vehicle Tracking6
4.1 General. 7 4.2 Surface Water Drainage. 7 4.3 Foul Sewer 7 4.4 Water Supply. 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy. 9 5.2 Surface Water Strategy. 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change. 16 5.6 Flooding Provision. 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance. 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	4.0	EXISTING SERVICES AND UTILITIES7
4.2 Surface Water Drainage	4.1	General7
4.3 Foul Sewer 7 4.4 Water Supply 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy 9 5.2 Surface Water Strategy 9 5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	4.2	Surface Water Drainage7
4.4 Water Supply. 8 5.0 PROPOSED SURFACE WATER DRAINAGE 9 5.1 Surface Water Policy. 9 5.2 Surface Water Strategy. 9 5.3 Attenuation 13 5.4 Design Standards. 16 5.5 Climate Change. 16 5.6 Flooding Provision. 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance. 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	4.3	Foul Sewer
5.0 PROPOSED SURFACE WATER DRAINAGE .9 5.1 Surface Water Policy .9 5.2 Surface Water Strategy .9 5.3 Attenuation .13 5.4 Design Standards .16 5.5 Climate Change .16 5.6 Flooding Provision .16 5.7 Surface Water Quality Impact .17 5.8 Interceptance .18 6.0 PROPOSED FOUL DRAINAGE .19 6.1 Proposed Foul Layout .19 6.2 Design Calculations .19 7.0 WATER SUPPLY AND DISTRIBUTION .22 7.1 Proposed Water main and Supply .22 7.2 Water main Standards and Details .22 7.3 Hydrants .22	4.4	Water Supply
5.1 Surface Water Policy		
5.2 Surface Water Strategy	5.0	PROPOSED SURFACE WATER DRAINAGE9
5.3 Attenuation 13 5.4 Design Standards 16 5.5 Climate Change 16 5.6 Flooding Provision 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	5.0 5.1	PROPOSED SURFACE WATER DRAINAGE
5.4 Design Standards. 16 5.5 Climate Change. 16 5.6 Flooding Provision. 16 5.7 Surface Water Quality Impact 17 5.8 Interceptance. 18 6.0 PROPOSED FOUL DRAINAGE 19 6.1 Proposed Foul Layout 19 6.2 Design Calculations 19 7.0 WATER SUPPLY AND DISTRIBUTION 22 7.1 Proposed Water main and Supply 22 7.2 Water main Standards and Details 22 7.3 Hydrants 22	5.0 5.1 5.2	PROPOSED SURFACE WATER DRAINAGE
5.5 Climate Change	5.0 5.1 5.2 5.3	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13
5.6Flooding Provision165.7Surface Water Quality Impact175.8Interceptance186.0PROPOSED FOUL DRAINAGE196.1Proposed Foul Layout196.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4	PROPOSED SURFACE WATER DRAINAGE
5.7Surface Water Quality Impact175.8Interceptance186.0PROPOSED FOUL DRAINAGE196.1Proposed Foul Layout196.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16
5.8Interceptance186.0PROPOSED FOUL DRAINAGE196.1Proposed Foul Layout196.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5 5.6	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16
6.0PROPOSED FOUL DRAINAGE196.1Proposed Foul Layout196.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16 Surface Water Quality Impact 17
6.1Proposed Foul Layout196.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance 18
6.2Design Calculations197.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance 18 PROPOSED FOUL DRAINAGE 19
7.0WATER SUPPLY AND DISTRIBUTION227.1Proposed Water main and Supply227.2Water main Standards and Details227.3Hydrants22	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy. 9 Surface Water Strategy. 9 Attenuation 13 Design Standards. 16 Climate Change. 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance. 18 PROPOSED FOUL DRAINAGE 19 Proposed Foul Layout 19
 7.1 Proposed Water main and Supply	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1 6.2	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance 18 PROPOSED FOUL DRAINAGE 19 Proposed Foul Layout 19 Design Calculations 19
7.2 Water main Standards and Details	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1 6.2 7.0	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy. 9 Surface Water Strategy. 9 Attenuation 13 Design Standards. 16 Climate Change. 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance. 18 PROPOSED FOUL DRAINAGE 19 Proposed Foul Layout 19 Design Calculations 19 WATER SUPPLY AND DISTRIBUTION 22
7.3 Hydrants	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1 6.2 7.0 7.1	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy. 9 Surface Water Strategy. 9 Attenuation 13 Design Standards. 16 Climate Change. 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance. 18 PROPOSED FOUL DRAINAGE. 19 Proposed Foul Layout 19 Design Calculations 19 WATER SUPPLY AND DISTRIBUTION 22 Proposed Water main and Supply 22
	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.0 6.1 6.2 7.0 7.1 7.2	PROPOSED SURFACE WATER DRAINAGE 9 Surface Water Policy 9 Surface Water Strategy 9 Attenuation 13 Design Standards 16 Climate Change 16 Flooding Provision 16 Surface Water Quality Impact 17 Interceptance 18 PROPOSED FOUL DRAINAGE 19 Proposed Foul Layout 19 Proposed Foul Layout 19 VATER SUPPLY AND DISTRIBUTION 22 Proposed Water main and Supply 22 Water main Standards and Details 22

	7.4	Design Calculations	. 22
--	-----	---------------------	------

APPENDICES

Appendix A .	PERMISSIBLE OUTFLOW CALCULATIONS
Appendix B .	STORMWATER ATTENUATION CALCULATIONS
Appendix C .	TOPOGRAPHICAL SURVEY
Appendix D .	IRISH WATER RECORDS
Appendix E .	IRISH WATER CONFIRMATION OF FEASIBILITY & STATEMENT OF DESIGN ACCEPTANCE
Appendix F .	FOUL CALCULATIONS
Appendix G .	DCC PRE-APP COMMENT RESPONSES

1.0 INTRODUCTION

1.1 Background

DBFL have been instructed to prepare an Infrastructure Design Report to accompany a planning application for the proposed mixed-use development on a site at 1-4 East Road, Dublin 3.

The proposed development is located off East Road, where the existing Hireco's container/trailer park currently is sited.

1.2 Location & Topography

The proposed site is located in East Wall, in the North Dock area of Dublin City, approximately 1.8km north-east of the City Centre. The site is approximately 2.11Ha and is currently occupied by Hireco as a container/trailer park which comprises mostly hardstanding area and five main buildings. There are also two existing red brick buildings at no. 4 East Road at the norther corner of the site.

The site is bound by East Road to the west, the larnrod Eireann railway to/from Dublin Port to the south, Merchant's Square residential development to the east and the Teeling Way residential apartments to the north and north-east.

As per Dublin City Councils development plan, the site has been zoned Z14, to seek the social, economic and physical development and/or rejuvenation of an area with mixed use, of which residential and "Z6" would be the predominant uses.

Generally, the site is relatively flat with a slight fall from north to south. The existing topography levels range from 0.88m AOD in the northern extent of the site to circa 0.11m AOD in the southern extents of the site.

The topographical survey has been included in appendix C.

Site Boundary
Figure 1.1 Site Location (Site Boundary Indicative Only)

1.3 Existing Ground Conditions

A ground investigation was undertaken by Ground Investigations Ireland and this revealed that the strata encountered consisted mainly of Surfacing on made ground to approximately 0.45m-1.5m BGL on Granular and Cohesive deposits of fine to medium or fine to coarse SAND and slightly sandy clayey SILT respectively above laminated cohesive deposits of sandy silty CLAY to 7.7m-15.6m BGL. Lower granular deposits were also encountered below the made ground deposits which were described as stiff cohesive glacial till deposits to approximately 15.4m-17.9m BGL extending to a maximum depth of 23.4m BGL in BH05A.

Rock was not encountered within the site investigation even though investigation went down to a depth of 30.9m BGL.

Groundwater was noted at depths between 0.33m and 1.2m BLG which indicates a high groundwater table.

1.4 Proposed Development

The development will consist of the construction of a mixed use development set out in 9 no. blocks, ranging in height from 3 to 15 storeys to accommodate 554 no. apartments, commercial/enterprise space, retail units, foodhub/café/exhibition space, residential amenity services, crèche and men's shed. The site will accommodate 241 no. car parking spaces, 810 bicycle parking, storage, services and plant areas. Landscaping will include a new central public plaza and residential podium courtyards.

2.0 Flood Risk

Based on a review of the Eastern Catchment Flood Risk Assessment and Management (CFRAM) study, the Irish Coastal Protection Strategy Study (ICPSS) and Dublin City Council's Strategic Flood Risk Assessment (SFRA), we note that the development lands are located within Flood Zone A, although the site is protected by flood defences.

The review concluded that the site is located within Flood Zone A, as indicated in the ICPSS indicating a flood level for the 0.5% AEP and 0.1% AEP as 3.07m and 3.28m respectively. As the proposed residential development will be classified as 'Highly vulnerable' within the 'Planning System and Flood Risk Management Guidelines for Planning Authorities' a flood level of 4.08m AOD, which includes climate change and freeboard as required by DCC, has been calculated as the minimum finished floor level for the elements of the development that have been classed as 'Highly vulnerable'.

All development below this level (i.e. ground floor) will be 'Less vulnerable development' consisting of car parking and commercial uses, and all development at this level will be of flood resilient design.

The above flood level information is supported from the North Lotts & Grand Canal SDZ Strategic Flood Risk Assessment and associated planning permissions in the region of the proposed development.

Flood risk has been assessed in a Site Specific Flood Risk Assessment (SSFRA). Please refer to DBFL report 170200-Rep-003 – SSFRA.

3.0 SITE ACCESS AND ROAD LAYOUT

3.1 Existing Access

The proposed development site has a single-entry point on East Road, opposite the existing East Road/Church Road priority junction, to the west of the subject site.

3.2 Proposed Access & East Road Signalised Junction

Access to the site for all users will be via East Road to the west of the proposed development site where the existing entrance is currently located.

The subject development proposals include the upgrading of the existing East Road/Church Road priority junctions to be signal controlled. The site access will be incorporated into these works, creating a four-arm signalised crossroads junction, refer to figure 3.1 and DBFL drawing 170200-2000.

Figure 3.1 Proposed Junction and Access for Development

3.3 Proposed Parking

As part of the planning application, a separate report has been compiled to detail the parking strategy. This can be found in DBFL report 170200-Rep-005 – Car Parking strategy.

3.4 Vehicle Tracking and Servicing Strategy

As part of the servicing strategy the external vehicle area has been designed to accommodate all types of anticipated service vehicles. For the retail/commercial aspects of the development it is expected that deliveries will be the most frequent vehicles, and a set down layby has been provided (15.5m long by 2.7m wide) to accommodate these. The management company of the development will enforce restrictions for this set down area to ensure the area is available for the required servicing of the development.

The proposed road layout and hard landscaping areas have been tracked to demonstrate that the site's proposed corner radii and turning heads will accommodate everyday vehicles such as normal delivery and cars. Other vehicles such as refuse trucks and fire tender have been tracked to ensure they can turn and manoeuvre around the development (refer to DBFL Drawings 170200-2003).

As part of the refuse strategy detailed in the Operational Waste Management Strategy, the refuse collection point will be located adjacent to block D1 by the set down area. This will allow refuse vehicles to enter the development, turn in the external vehicle area and use the set down layby to collect the refuse while keeping the entrance and exit routes clear.

As per the Operational Waste Management Strategy, it will be the development's management company that will ensure all refuse is moved from the waste storage areas to the refuse collection point. More details of the refuse strategy can be found in the Operation Management Strategy included with the planning application.

4.0 EXISTING SERVICES AND UTILITIES

4.1 General

A comprehensive topographical survey was carried out for the subject site and existing drainage and utility records in the vicinity of the site obtained and surveyed in detail. A summary of the existing main services is provided below, and the Irish Water records can be found in appendix D.

4.2 Surface Water Drainage

The proposed site is serviced by an existing surface water sewer located to the west of the site along East Road which runs in a southerly direction. This sewer in turn connects to the existing 920mm diameter brick combined sewer on Church Road and continues in a southerly direction passing under the railway, discharging to the existing Irish Water pumping station on East Road.

4.3 Foul Sewer

By reviewing records, the surrounding area predominately uses a combined drainage network. The subject site is serviced by an existing 600mm diameter combined sewer on East Road which runs from north to south towards the existing Irish Water pumping station to the south of the development.

Figure 4.1 Existing Watermain and Sewer Records

4.4 Water Supply

The site is well served by a series of watermains in East Road and Church Road, with several spurs for connections, some of which may well be historical. The existing site is served by a 6 "Cast Iron watermain in East Road while also having a separate connection to a 6" Cast Iron watermain located on the junction of East Road and Church Road.

Existing fire hydrants are located along the site frontage in East Road.

5.0 PROPOSED SURFACE WATER DRAINAGE

5.1 Surface Water Policy

The management of surface water for the proposed development has been designed to comply with the policies and guidelines outlined in the Greater Dublin Strategic Drainage Study (GDSDS) and with the requirements of Dublin City Council. The guidelines require the following 4 main criteria to be provided by the design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage and treatment within the green roof, bio-retention/filter drains and green courtyard and garden.
- Criterion 2: River Regime Protection satisfied by attenuating to greenfield run-off rates.
- Criterion 3: Level of Service (flooding) for the site satisfied by the development's surface water drainage design, planned flood routing, run-off contained within site, flood storage and building set greater than 0.5m above 100-year flood level.
- Criterion 4: River flood protection attenuation volume and discharge limit designed to greenfield run-off rates (long term storage not provided).

5.2 Surface Water Strategy

To meet the requirements of the surface water policy above, the surface water strategy has been described in this section to give a clearer indication of how the design development has progressed to the submitted design. To give a clearer understanding of each SuDS element, and the different stages of the treatment train, the strategy has been broken down to different levels, which include roof, terraces, podium and ground. An overview of the different SuDS features incorporated within the development proposals can be seen on DBFL Drawing 170200-3000 and 3002.

Infiltration techniques such as Soakaways have been discounted as part of the development due to the groundwater table recorded during the site investigation and the potential presence of contaminated material within the site.

Roof & Terrace Level:

As the first part of the treatment train, the SuDS features have been designed to prioritise, interception and reduction of flow rates. The features that will be incorporated into the design are:

 Green roof - this will be a mixture of intensive and extensive type with 80mm minimum construction depth. All necessary safety requirements will be designed and constructed to ensure safe maintenance can occur. The green roof will provide interception and reduction of flow rates at the beginning of the treatment train, providing source control for a large area of the development. Drawing 170200-3002 shows the extents of the Green Roof. After surface water has passed through the Green Roof, this will discharge to the surface water network.

- Planters will also be installed on the roof terraces locally acting to reduce run
 off and allowing an element of interception to occur.
- The hardstanding of the roof terraces will be constructed of permeable paving that allows the surface water to slowly percolate through the build-up before being discharged to the positive drainage system.
- Due to the rest of the roofs of the development being pitched, these will need to drain via a positive drainage system to the below surface water network.

Podium Level (1st Floor):

 At podium level the subject development will implement a permeable pavement and green landscaping (over Podium A and B). Refer to DBFL drawing 170200-3002 for extents.

The green landscaped areas will constitute what is similar to an intensive Green Roof build-up, allowing surface water run-off to slowly percolate through the build-up medium, reducing the flows through the drainage network and also allowing vegetation to intercept run-off creating a reduction in run-off volumes.

- In areas of permeable paving a free draining aggregate sub-base will be used between the permeable paving and the podium slabs allowing a reduction in flows within the drainage network.
- Once the rainwater has filtered through the various build-up mediums, run-off will drain to gullies located at the structural slab level and then conveyed to the below ground system via slung drainage.
- In addition to the above, smaller SuDS elements will also be located on podium such as Bio-swales, raised planters and rain gardens (refer to fig 5.1). These will be specified in co-ordination with the landscape design to slow any areas of hardstanding that need to be drained and also provide additional treatment and subsequent improvement of discharge quality.

Figure 5.1 Examples of Urban Swales/Bio-swales – Various Sources

Ground Floor:

• Permeable paving will be located around the ground floor of the development to again treat and reduce run-off at source. Figure 5.2 shows the proposed main areas where permeable paving is proposed, and the full extents can be seen on DBFL drawing 170200-3002. Impermeable strips have been included in the design to allow other services to be easily constructed and maintained. These areas still predominately drain to either the permeable paving or the proposed landscape features such as rain gardens as seen in Fig 5.3 & 5.4.

Figure 5.2 Main areas of Permeable Paving

 Tree pits and vegetation planters will also be connected to the surface water drainage and allow run-off to pass through planters and tree pits allowing interception of this vegetation, further reducing volume and flow rates within the drainage system. The use of smaller sustainable conveyance techniques will also be implemented where possible.

Figure 5.3 Plan of East Yard Lane demonstrating integration of Landscape and Drainage design (from BSM Landscape Design Report)

Figure 5.4 Section of East Yard Lane demonstrating integration of Landscape and Drainage design (from BSM Landscape Design Report)

- The above source control SuDS measures being included within the design have been co-ordinated into the landscape design to ensure the surface water strategy is integral to the Landscape. This has reduced the sites reliance on attenuation tanks to reduce peak run-off flow rates. Although due to the design storm event, and the need to incorporate climate change within the design a certain volume is still required within an attenuation tank.
- The site requires two attenuation tanks to provide the required volume to ensure the development does not flood in the 1 in 100 year storm event plus climate change. The main attenuation storage for the subject site will be located in the square of the development (East Square) with another attenuation system located under the pedestrianised street that runs through the spine of the development (East Yard Lane, as shown in Figure 5.4).
- SuDS elements as described previously on ground floor will be also be connected to these attenuation tanks, decreasing the reliance on attenuation systems and using a co-ordinated multi element SuDS network to service the site.

The incorporation of the above SUDS elements will provide a sustainable manner in which to disperse surface water from the site and provide treatment of run-off and subsequent improvement of discharge quality.

5.3 Attenuation

Attenuation volumes have been calculated based on an allowable outflow / green field runoff rate of 4l/sec (QBAR_{RURAL} calculated in accordance with Institute of Hydrology Report 124, see Appendix A). Refer to Appendix A for calculations sheets.

The drainage design uses SOIL type 2 for the site's QBar greenfield run-off calculations. To derive the soil type, table 4.5 of the Flood Studies Report was used as recommended by the GDSDS. The following is a summary of the site characteristics used in the selection of the pre-development soil value.

Run-off from the new development will be attenuated and has been calculated using a maximum of 2l/s/ha in accordance with the requirements of Dublin City Council, using a 'hydrobrake optimum' or similar approved as a flow control device.

The impermeable areas contributing to the attenuation volume have had the following reduction factors applied:

Roof Level:

- <u>Green roofs</u>, the proposed build-up will be a mix of intensive and extensive type with 80mm minimum construction depth. The soil build-up will primarily absorb some of the initial run-off and once saturated will reduce the flow of run-off through the green roof medium. Therefore, a reduction of volume and flow rate will occur due to the presence of the green roof. Also, the green roof plant life will absorb a percentage of the run-off, further reducing volume that will drain to the surface water network. Therefore a 30% reduction factor has been applied.
- Flat impermeable roof and roads, a 5% reduction of the surface area is applied to take account of run-off not collected and stored within the micro and macro texture of the surfacing (various sources recommend different reduction coefficients e.g. IS EN752 recommends Runoff Coefficient (C for the Rational Method) of 0.9 to 1.0 for impermeable areas and steeply sloping roofs. For flat roofs it recommends 0.5 to 1.0 depending on area).

Podium Level & Ground Floor:

- <u>Green areas over podium</u>, a reduction factor of 50% has been applied. The deep soil build-up will primarily absorb a substantial amount of the initial run-off and once saturated will reduce the flow of run-off through the green roof medium.
- <u>Permeable Paving</u> on podium and ground will have a free draining material within the build-up and will reduce the flow rate from these areas. Rainfall will 'wet' the initial surface of the paving allowing water to be stored in the micro and macrotexture of the surfacing and will be lost to evapotranspiration, as the run-off drains through the free draining aggregate, this build-up will also 'wet' giving another volume reduction due to evapotranspiration and natural storage

within the SuDS feature. A reduction in velocity will also occur as the aggregate used will slow the run-off at source, changing the input hydrograph which will ultimately reduce the peak inflow for attenuation calculations. A reduction factor of 30% has been applied for these reasons.

- Areas draining to Filter Drains and Bioswales and/or Treepits, a conservative reduction factor of 20% has been applied for these areas not located over podium. Firstly, rainfall will 'wet' the initial surface of the paving, allowing water to be stored in the micro and macrotexture of the surfacing and will be lost to evapotranspiration, giving a reduction in volume. As run-off drains to these SuDS elements and through the build-up, the aggregate/soil surface area will also 'wet' giving another reduction of volume due to evapotranspiration and natural storage within the SuDS feature. There will also be a reduction of velocity as the aggregate/filter material used in the SuDS feature slows the run-off at source, changing the input hydrograph which will ultimately reduce the peak inflow for attenuation calculations. The SuDS Manual outlines that they "can help reduce flow rates from a site by providing some attenuation storage and can reduce storage volume requirements where infiltration occurs".
- <u>Green areas over podium</u>, a reduction factor of 50% has been applied. The deep soil build-up will primarily absorb a substantial amount of the initial run-off and once saturated will reduce the flow of run-off through the green roof medium.

Throughout the site, a geo-cellular storage system has been selected and designed to provide the required volume for the 100-year storm event (+20% climate change) using Micro Drainage source control software, refer to Appendix B for summary of results for various storm-water durations. Calculations indicate that 992m³ of storage volume for the 100-year event (+20% climate change) is needed.

Micro-Drainage indicate the storage void required at the selected design head and a separate calculation sheet has been provided to demonstrate how the dimensions of the storage systems provide the necessary volume.

Surface water attenuation calculations can be found in Appendix B.

5.4 Design Standards

Storm-water drainage has been designed in accordance with the Greater Dublin Code of Practice for Drainage Works. The following design parameters are applicable to the design:

•	Time of entry:	4 minutes
	Time of endy.	+ minutes

- Pipe Friction (Ks):
 0.6 mm
- Minimum Velocity: 1.0 m/s
- Standard Average Annual Rainfall: 745mm
- M5-60: 17.1mm
- Ratio r (M5-60/M5-2D): 0.28
- Attenuation Tank Storm Return Event
 GDSDS Volume 2, p61, Criterion 3
 30 year no flooding on site.

100 year check no internal property flooding. Flood routing plan. FFL freeboard above 100-year flood level. No flooding to adjacent areas.

Climate Change
 10% for rainfall intensities, as GDSDS

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The minimum pipe diameter for public surface water sewers is 225mm. Private drains comprise of diameters from 100mm.

5.5 Climate Change

Surface water calculations for the development made use of rainfall values for the East Wall area as provided by Met Eireann. Rainfall intensities were increased by a factor of 20% to take account of climate change, as required by the DCC for attenuation storage design.

5.6 Flooding Provision

In the case that that an exceedance storm event occurs, in excess of the 1% AEP. The development's layout is designed to ensure over-land flows are directed away from the buildings. In larger than the 100-year storm events, there will be additional volume within the surface water network which will be able to surcharge before flooding. When this tolerance has been exceeded the attenuation storage features will flood and overtop, with

overland flows expected to pass from the site onto East Road following the topography of the land (refer to figure 5.5).

Figure 5.5 Overland Flow route in exceedance event

5.7 Surface Water Quality Impact

The type of development is low risk i.e. it does not present a high risk of run-off contamination. The development's design and layout further reduce the risk of contaminants entering the surface water network as the majority of the site coverage will either be roof area or green / pedestrianised podium areas with the majority of vehicle parking provided at ground level under podium. Run-off from roofs will have a first stage of treatment by draining through green-roof medium which in turn drain to the on-line attenuation storage systems. Soft and hard landscaped podiums will drain via their build-ups to a slung system which in turn also drain via the geo-cellular online attenuation storage systems which provide further secondary removal of pollutants due to the geotextiles and filter stone before final discharge to the sewer.

The highest risk of contaminated surface water run-off from the site would be from the access road and entrances to the car park which are relatively small areas.

All incidental drainage from the car park is discharged separately via a Class 1 oil separator to the surface water sewer. In this way it is considered that the development

provides treatment of collected run-off, provides a SUDS treatment train approach and is low risk of pollutants.

The proposed surface water system has therefore been designed to incorporate SuDS techniques which naturally reduce pollutants and improve water quality.

5.8 Interceptance

The GDSDS recommends that no run-off should pass directly to a river for rainfall depths of 5mm and up to 10mm if possible i.e. interception. The development's drainage design allows for collection of a majority of the site's run-off via SuDS features e.g. Greenroofs, filter drains and bio-swales, providing interception at source. In turn resulting runoff is conveyed to on-line attenuation storage systems which are combined with the developments landscape and connected to tree pits and planting which remove pollutants and provide a level of further interception. Calculations in accordance with the GDSDS recommendations can be found in appendix A and indicate a minimum of 58.5m³ of interception volume should be provided. This interception will occur within elements such as Green-roof and green podium.

6.0 PROPOSED FOUL DRAINAGE

6.1 Proposed Foul Layout

The proposed foul drainage has been designed to drain via one outfall to the Irish Water combined sewer in East Road.

The foul drainage network can be found on DBFL drawing 170200-3001.

As part of the pre-planning stage, Irish Water have reviewed the designs and made their comments. The drawings have been updated and Irish Water has issued a Statement of Design Acceptance. Foul calculations can be found in appendix F.

6.2 Design Calculations

Minimum gradients and pipe diameters for gravity collector and main sewers are designed in accordance with the Building Regulations and Irish Water's Code of Practice for wastewater infrastructure and Standard Details for wastewater infrastructure.

The sewer network is designed in accordance with the principles and methods set out in Irish Water's Code of Practice for Wastewater Infrastructure, IS EN 752 (2008), IS EN12056: Part2 and Building Regulations Part H.

Foul sewer design criteria are as follows:

Pipe Roughness Coefficient	1.5 mm
Minimum Velocity	0.75 m/s (self-cleansing)
Maximum Velocity	3.0 m/s

Estimated peak foul loading generated by the proposed development is provided in Table 6.1 and 6.2 below:

RESIDENTIAL - PREDICTED DEVELOPMENT FOUL FLOWS								
Use Type No. of Units Rate (P) (I/day/person)* Daily Loading (PG) (I/day)								
Residential5542.7 people/dwelling1496150224,400								
					Daily Loading	2.60		
					Growth factor	1.00		
Infiltration @ 10% (as CoP Appendix C - 1.2.4)						0.02		
				Dry We	ather Flow (I/s)	2.62		
Residential Peaking Factor (as CoP Appendix C - 1.2.5)						6.00		
Design Foul Flow (I/s)						15.72		
Surface Water allowance SW @ 1.5 (as CoP Appendix C - 1.2.10)						0.20		
				D	esign Flow (I/s)	15.74		
1								

*Flow rates extracted from IW CoP for Wastewater Infrastructure - Appendix D

Table 6.1: Estimated Foul Loading for residential development

COMMERCIAL - PREDICTED DEVELOPMENT FOUL FLOWS								
Use Type Floor Space (m ²) Occupancy Rate Population (P) Loading (G) (I/day/person)* Daily Loading (PG) (I/day)								
		1 per 60 m ² (staff)	11	60	660	0.02		
Cale/Exhibition	000	1 per 3 m ² (customers)	226	15	3,390	0.08		
Cràcha	520	1 per 6 m ² (children)	90	50	4,500	0.10		
Cleche	529	1 per 5 children (staff)	18	50	900	0.02		
Enterprise	2444	1 per 10m ²	244	50	12,200	0.28		
Tenant Amenity	362	1 per 5 m ²	72	50	3,600	0.08		
Retail	344	1 per 20 m ²	17	50	850	0.02		
					Daily Loading	0.60		
					Growth factor	1.00		
			Infiltration @	10% (as CoP App	oendix C - 1.2.4)	0.01		
				Dry We	ather Flow (I/s)	0.61		
Residential Peaking Factor (as CoP Appendix C - 1.2.7)								
Design Foul Flow (I/s)						2.75		
		Surface Water allo	wance SW _E @	1.5 (as CoP Appe	endix C - 1.2.11)	0.04		
				De	esign Flow (I/s)	2.79		
*Flow rates extracted from IW CoP for Wastewater Infrastructure - Appendix D								

**For commercial premises, a working day is assumed to be over 12 hours

Figure 6.1 Estimated Foul Loading for commercial development

Overall design flows from the development are calculated using IW CoP for Wastewater Infrastructure Appendix C, as outlined below.

Dry Weather Flow = PG + I + EDesign Foul Flow = [$Pf_{Dom} \times PG$] + [$Pf_{Dom, Ind} \times P_EG_E$] + I + [$Pf_{Trade \times}E$] (Eqn1) Design Flow = Eqn 1 + [SW + SW_E]

The type of proposed use is commercial comprising offices i.e. trade use, so that no industrial flow has been assumed.

For commercial premises a working day is assumed to be over 12 hours when flows will be contributing to the public sewer network.

Growth rates are not assumed as the proposed application is for a fixed quantum of development (G = 1).

Dry Weather Flow = 0.61l/s.

Design Foul Flow = 2.75l/s

Design Flow = 2.79l/s

7.0 WATER SUPPLY AND DISTRIBUTION

7.1 **Proposed Water main and Supply**

As part of the development proposals the existing water main on site will be removed and a new connection to the existing 6" diameter watermain in East Road will be made (refer to DBFL Drawings 170200- 3002). This will feed a cold-water storage tank located at undercroft level.

7.2 Water main Standards and Details

The water main layout and details including valves, hydrants, metering etc. will be in accordance with Irish Water's Code of Practice and Standard Details for water infrastructure.

7.3 Hydrants

As stated previously, Existing fire hydrants are located along the site frontage in East Road. These will be maintained to cater for any fire at the proposed development.

Hydrants shall comply with the requirements of BS 750:2012 and shall be installed in accordance with Irish Water's Code of Practice and Standard Details.

7.4 **Design Calculations**

The water demand is designed in accordance with the principles and methods set out in Irish Water's Code of Practice for Water Infrastructure Connections and Developer Services Design & Construction Requirements for Self-Lay Developments December 2017:

Overall water demand is calculated using IW CoP for Water Infrastructure section 3.7.2, as outlined below:

Per-capita consumption	150l/person/day
Average day/week demand factor	1.25
Peak demand factor	5.0
Average daily domestic demand = Total	occupancy * Per-capita consumption
Average day/peak week demand = / day/week demand factor	Average daily domestic demand * Average
Peak hour water demand = Average day	//peak week demand * Peak demand factor

Estimated water demand for the proposed development is provided in Table 7.1:

RESIDENTIAL WATER DEMAND									
Use Type	No. of Units	Occupancy Rate	Population (P)	Average daily domestic demand (I/day)	Average daily domestic demand (I/s)	Average day/peak week demand (I/s)	Peak hour water demand (I/s)		
Residential	554	2.7 persons/dwelling	1496	224,400	2.60	3.25	16.25		
Peak hour water demand (I/s)									

Table 7.1	Estimated	Water	Demand for	Residential	Development
	Lounatoa		Domana io	1.00raontia	Development

	COMMERCIAL WATER DEMAND										
Use Type	Floor Space (m ²)	Occupancy Rate	Population (P)	Average daily domestic demand (I/day)	Average daily domestic demand (l/s)*	Average day/peak week demand (l/s)	Peak hour water demand (I/s)				
Cofé	690	1 per 60 m ²	11	660	0.02	0.03	0.15				
Cale	000	1 per 3 m ²	226	3,390	0.08	0.1	0.50				
Cràcha	520	1 per 6 m ² (children)	90	4,500	0.10	0.13	0.65				
Cleche	559	1 per 5 children (staff)	18	900	ER DEMANDge daily nestic mand day)Average daily domestic demand (l/s)*Average day/peak week demand (l/s)3600.020.03,3900.080.1,5000.100.13,5000.020.03,2000.280.35,6000.020.033500.020.03Peak hour water demand (l/s)be over 12 hours	0.15					
Enterprise	2444	1 per 10 m2	244	12,200	0.28	0.35	1.75				
Tenant Amenity	362	1 per 5 m ²	72	3,600	0.08	0.10	0.5				
Retail	344	1 per 20 m ²	17	850	0.02	0.03	0.15				
	Peak hour water demand (I/s) 3.85										
*For comm	ercial pr	emises, a working	g day is assur	ned to be over 12	hours						

*For commercial premises, a working day is assumed to be over 12 hours

Table 7.2 Estimated Water Demand for Commercial Development

Appendix A

PERMISSIBLE OUTFLOW CALCULATIONS

PROJECT Mixed Use Deve SUBJECT Surface Water (Drawing ref. 170200-3001	elopment at 1-3 East Road, East Wall, Dublin 3 Calculations - Permissible Site Discharge (Impermeable Area dra Calculations by Checked by IGR NJF	aining to Atten	uation Tank)	JOB REF. p170200 Calc. Sheet No. 1 Date 13-Dec-18	ŒL
PERMISSIBL	E SURFACE WATER DISCHARGE CALCULATIONS				
Site Area					
What is the over	rall site area?	2.11	Hectares (ha)	Site is Less than 50	0 Hectares
Pre-Development	t Catchment Soil Characteristics	. <u> </u>			
Are there differe	ent soil types present on the pre-developed site?	No			
	Catchment This refers to the entire site area	2.11			SOIL SOIL Value SPR
	Area Drainage Group	2.10	Hectares (ha)		1 0.15 0.10 2 0.30 0.30
	Depth to Impermeable Layers	1	Class		3 0.40 0.37
	Permeability Group above Impermeable Layers	3	Class		4 0.45 0.47
		1	Class		5 0.50 0.53
	SOIL Type ¹ SOIL Index	0.30	-		
		0.00	_		
Site SOIL index	Value	0.30			
Site SPR Value		0.30			
Post-Developm Is the developm What is the over	tent Catchment Characteristics ent divided into sub-catchments? erall site area for catchment?	No 2.11	Hectares (ha)		
	Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)	I
	Roofs (Draining to gullies)	5134.000	0.95	4877.300	j
	Green Roofs	4120.000	0.70	2884.000	
	Roads and Footpaths - Type 1 (Draining to Guilles)	0.000	0.95	0.000	
	Paved Areas (Draining to SuDS Features)	1683.000	0.80	1346.400	
	Paved Areas (Draining to gullies)	520.000	0.90	468.000	
	Permeable Paving	1853.000	0.70	1297.100	
	Green Podium	2965.000	0.50	1482.500	
	Podium draining to SuDS Features Podium draining to guillies	2458.000	0.80	0.000	
	Grassed Areas	2301.000	0.00	0.000	
	Public Open Space	0.000	0.00	0.000	<u> </u>
	Include Public Open Space in Effective Catchment Area? Effective Catchment Area Effective Catchment Runoff Coefficient	No 14321.700 0.68	m²		
Long-Term Sto	2220				
Is long-term Sto	rrage provided?	No	<u> </u>		
Permissible Sit	<u>te Discharge</u>				
What is the Star	ndard Average Annual Rainfall (SAAR)?	693.0	mm	From Met Eireann, Co-or	rdinates N235000, E318000
Is the overall site	e area less than 50 hectares?	Yes	- T		
50040		0.00			
"QBAR _{Rural} calc	culated for 50 ha and linearly interpolated for area of site	3.90	Litres/sec		
⁷ Site Discharge	=	3.90	Litres/sec		
Notes and Forr 1. SOIL index value calcula 2. SPR value calculated frr 3. Rainfall depth for 100 ye 4. Long-term storage Vol _{xa} Where long-term sto 5. Total Permissible Outflo	nulae ated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table om GDSDS - Table 6.7. ear return period, 6 hour duration with additional 10% for climate change. $_{a}$ (m^{3}) = Rainfall.Area.10.[(PIMP/100)(0.8. α)+(1-PIMP/100)(β .SPR)-SPR]. (GDSDS Section 6.7.3). torage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QB. ow - QBAR (_{Rural}) calculated in accordance with GDSDS - Regional Drainage Policies	4.5). AR _(Ruta) .			
(Volume 2 - Chapte	rr 6), i.e. QBAR(m3/s)=0.00108x(Area) ^{0.89} (SAAR) ^{1.17} (SOIL) ^{2.17} - For catchments greater than 50 hectares	in area. Flow rates are I	linearly interpolated for a	areas samller than 50hectare	es.
 Where Total Permissible QBAR multiplied by grov 	a Outflow is less than 2.0l/s and not achievable, use 2.0 l/s or closest value possible. with factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figu.	ure C2.			

Infiltration V	'olume			
PROJECT Mixed Use Devel	opment at 1-3 East Road, East Wall, Dublin 3		ЈОВ REF. р170200	
SUBJECT Surface Water Ca	alculations - Infiltration Volume		Calc. Sheet No. 2	
Drawing ref.	Calculations by	Checked by	Date	
170200-3001	IGR	NJF	13-Dec-18	

SURFACE WATER CAL	<u>CULA</u>	<u>FIONS</u>	
Site Area			
Total Site Area =	2.11	Hectares (ha)	
Infiltration Volume (Post-D	evelopm	<u>ient)</u>	
Impermeable Area =	1.46	Hectares (ha)	
Rainfall Depth =	5	mm	
¹ Infiltration Volume =	58.5	m ³	
Notes			

80% runoff from impermeable areas assumed.

Appendix B

ATTENUATION CALCULATIONS

Calculation of attenuation tank dimensions:

In this surface water management design, the porosity of the storage beneath permeable paving and geo-cellular attenuation tank will vary. Micro Drainage source control does not enable the user to create calculations with different porosity values, therefore the attenuation tank was modelled assuming a porosity of 100%, effectively modelling the volume of storage required at the correct head. The volumes were then multiplied by the porosity of the proposed material for each element without altering the depth; 30% for free draining aggregate sub-base and 95% for the geo-cellular attenuation tank.

The free draining aggregate sub-base will be constructed in an area of $1,404m^2$ at a depth of 0.32m and the geo-cellular storage will be placed in an area of $1022m^2$ at a depth of 0.9m. This together with the porosity of each attenuation storage type results in *Table 1*.

Attenuation type	Calculated Volume from Micro Drainage (m ³)	Fixed Depth (m)	Porosity (void ratio)	Attenuation area (m²)	Relative area (m²)	Attenuation volume provided (m ³)
Geo-cellular Attenuation Tank	892.80	0.90	0.95	1,022.00	970.90	873.81
Free Draining Sub-base	88.24	0.32	0.30	1,404.00	421.20	134.78
TOTAL	981.04					1,008.59

Table 3 Storage provided

DBFL Consulting Engineers			
Ormond House	Mixed Use Development at		
Upper Ormond Quay	1-4 East Road, Dublin 3		
Dublin 7		Mirro	
Date 18/11/2019	Designed by Irati Gutierrez	Dcainago	
File 170200-WIN-001.SRCX	Checked by Nick Fenner	Diamage	
Innovyze	Source Control 2018.1	•	

Summary of Results for 100 year Return Period (+20%)

Half Drain Time : 2225 minutes.

	Storm	L	Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
		_							
15	min S	Summer	-0.570	0.230	0.0	3.7	3.7	223.3	ОК
30	min S	Summer	-0.483	0.317	0.0	3.8	3.8	308.2	ΟK
60	min S	Summer	-0.390	0.410	0.0	3.8	3.8	398.1	ОК
120	min S	Summer	-0.289	0.511	0.0	3.8	3.8	495.8	ΟK
180	min S	Summer	-0.227	0.573	0.0	3.8	3.8	556.3	ОК
240	min S	Summer	-0.181	0.619	0.0	3.8	3.8	600.8	ΟK
360	min S	Summer	-0.116	0.684	0.0	3.8	3.8	664.4	ΟK
480	min S	Summer	-0.069	0.731	0.0	3.8	3.8	709.8	ΟK
600	min S	Summer	-0.033	0.767	0.0	3.8	3.8	744.8	ОК
720	min S	Summer	-0.005	0.795	0.0	3.8	3.8	771.8	ОК
960	min S	Summer	0.034	0.834	0.0	3.8	3.8	809.8	ОК
1440	min S	Summer	0.075	0.875	0.0	3.8	3.8	849.4	ОК
2160	min S	Summer	0.090	0.890	0.0	3.8	3.8	864.3	ОК
2880	min S	Summer	0.089	0.889	0.0	3.8	3.8	863.6	ОК
4320	min S	Summer	0.072	0.872	0.0	3.8	3.8	846.9	ОК
5760	min S	Summer	0.046	0.846	0.0	3.8	3.8	821.3	ОК
7200	min S	Summer	0.015	0.815	0.0	3.8	3.8	791.0	O K
8640	min	Summer	-0 020	0 780	0.0	3 A	3 8	757 3	0 K
10080	min 9	Summer	-0.061	0.739	0.0	3.0	3.0	717 4	0 K
10000	min u	Junier	0 540	0.755	0.0	2.0	2.0	750 E	0 K
15	III TU V	vincer.	-0.542	0.258	0.0	3./	3.7	∠50.5	Οĸ

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	85.194	0.0	195.8	38
30	min	Summer	58.879	0.0	263.5	52
60	min	Summer	38.241	0.0	390.3	82
120	min	Summer	24.118	0.0	488.5	140
180	min	Summer	18.261	0.0	546.8	198
240	min	Summer	14.961	0.0	583.4	258
360	min	Summer	11.264	0.0	606.1	376
480	min	Summer	9.197	0.0	599.7	494
600	min	Summer	7.854	0.0	585.7	614
720	min	Summer	6.901	0.0	571.9	732
960	min	Summer	5.625	0.0	549.2	970
1440	min	Summer	4.216	0.0	517.0	1444
2160	min	Summer	3.158	0.0	1109.7	2052
2880	min	Summer	2.570	0.0	1079.3	2392
4320	min	Summer	1.920	0.0	987.9	3168
5760	min	Summer	1.560	0.0	1596.8	3992
7200	min	Summer	1.328	0.0	1695.1	4840
8640	min	Summer	1.164	0.0	1775.4	5712
10080	min	Summer	1.041	0.0	1833.7	6472
15	min	Winter	85.194	0.0	218.7	38
		©	L9 <mark>82-20</mark>	18 Inno	vyze	

DBFL Consulting Engineers						Page 2				
Ormond House	Mixe	d Use 1	Developme	ent at						
Upper Ormond Quay	1-4	East R	oad, Dubl	lin 3						
Dublin 7						Mirro				
Date 18/11/2019	Desi	gned b	y Irati (Gutierr	ez					
File 170200-WIN-001.SRCX	Chec	ked by	Nick Fer	nner		Diamada				
Innovyze	Sour	ce Con	trol 2018	3.1						
Summary of Results f										
Storm Max Max	M	ax	Max Gentural D	Max	Max	Status				
(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)					
	(-	, , ,	(1/0)	(1/0)	(
30 min Winter -0.444 0.356		0.0	3.8	3.8	346.0	O K				
60 min Winter -0.339 0.461		0.0	3.8	3.8	447.1	ОК				
120 min Winter -0.226 0.574		0.0	3.8	3.8	557.8	OK				
$\begin{array}{c} 100 \text{ min winter} -0.154 0.046 \\ 240 \text{ min Winter} -0.102 0.698 \end{array}$		0.0	3.8 3.8	3.8 7 8	0⊿0.8 678 1	OK				
360 min Winter -0.025 0.775		0.0	3.8	3.8	752.8	ОК				
480 min Winter 0.030 0.830		0.0	3.8	3.8	805.6	ОК				
600 min Winter 0.071 0.871		0.0	3.8	3.8	845.2	O K				
720 min Winter 0.105 0.905		0.0	3.8	3.8	876.3	ОК				
960 min Winter 0.211 1.011		0.0	3.8	3.8	920.9	ОК				
1440 min Winter 0.326 1.126		0.0	3.8	3.8	969.4	OK				
2880 min Winter 0.371 1.171		0.0	3.8	3.8	988.2	OK				
4320 min Winter 0.321 1.121		0.0	3.8	3.8	967.3	O K				
5760 min Winter 0.236 1.036		0.0	3.8	3.8	931.2	ОК				
7200 min Winter 0.131 0.931		0.0	3.8	3.8	887.0	O K				
8640 min Winter 0.061 0.861		0.0	3.8	3.8	836.0	O K				
10080 min Winter 0.003 0.803		0.0	3.8	3.8	779.9	ОК				
Storm	Rain	Flooded	Discharge	e Time-Pe	eak					
Event (n	m/hr)	Volume	Volume	(mins)					
		(m³)	(m³)							
30 min Winter 5	8.879	0.0	286.2		52					
60 min Winter 3	88.241	0.0	436.3	5	80					
120 min Winter 2	4.118	0.0	541.2	: 1	L38					
180 min Winter 1	.8.261	0.0	593.7	1	L96					
240 min Winter 1 360 min Winter 1	1 261	0.0	61U.2 500 /		454 870					
480 min Winter	9.197	0.0	582.7		186					
600 min Winter	7.854	0.0	568.9	. 6	502					
720 min Winter	6.901	0.0	557.8	1 7	718					
960 min Winter	5.625	0.0	542.9	9	950					
1440 min Winter	4.216	0.0	530.9	14	104					
2160 min Winter	3.158	0.0	1139.9	20	J56					
2000 min Winter 4320 min Winter	∠.5/U 1 920	0.0	1074 C) 26	33∠ 304					
5760 min Winter	1.560	0.0	1786.9	42	272					
7200 min Winter	1.328	0.0	1893.4	52	208					
8640 min Winter	1.164	0.0	1966.6	61	L52					
10080 min Winter	1.041	0.0	1951.4	- 70)72					
<u></u>	80-00	18 Tnn								
	02-20	TO TITU	луде							

DBFL Consulting Engineers		Page 3
Ormond House	Mixed Use Development at	
Upper Ormond Quay	1-4 East Road, Dublin 3	
Dublin 7		Mirro
Date 18/11/2019	Designed by Irati Gutierrez	Dcainago
File 170200-WIN-001.SRCX	Checked by Nick Fenner	Diamage
Innovyze	Source Control 2018.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms Ye	es
Return Period (years)	100	Cv (Summer) 0.75	50
Region	Scotland and Ireland	Cv (Winter) 0.84	40
M5-60 (mm)	16.200	Shortest Storm (mins)	15
Ratio R	0.279	Longest Storm (mins) 1008	30
Summer Storms	Yes	Climate Change % +2	20

Time Area Diagram

Total Area (ha) 1.430

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.250	8	12	0.250	16	20	0.230
4	8	0.250	12	16	0.250	20	24	0.200

DBFL Consulting Engineers										
Ormond House		Mixed W	Jse Develo	pment at						
Upper Ormond Ouay		1-4 Eas	1-4 East Road, Dublin 3							
Dublin 7										
Date 18/11/2019										
$E_{ilo} 170200 - WIN - 001$	² Drainage									
FILE 170200-WIN-001	SRCA	Checked	d by NICK							
Innovyze		Source	Control 2	018.1						
			+							
MODEL DETAILS										
Storage is Online Cover Level (m) 0 700										
	Storage is Unitine Cover Level (m) 0.700									
	Cellula	ir Stora	ge Structu	ire						
	Inve	rt Level	(m) -0.800	Safety Facto	or 2.0					
Infiltrati	on Coefficient	Base (m/	hr) 0.00000	Porosi	ty 1.00					
Infiltrati	on Coefficient	Side (m/	hr) 0.00000							
Depth (m) Are	a (m²) Inf. Are	ea (m²) D	epth (m) Ar	ea (m²) Inf.	Area (m²)					
0.000	970 9	1000 0	1 200	421 2	1000 0					
0.100	970.9	1000.0	1.220	421.2	1000.0					
0.200	970.9	1000.0	1.221	0.0	1000.0					
0.300	970.9	1000.0	1.300	0.0	1000.0					
0.400	970.9	1000.0	1.400	0.0	1000.0					
0.500	970.9	1000.0	1.500	0.0	1000.0					
0.600	970.9	1000.0	1.600	0.0	1000.0					
0.700	970.9	1000.0	1.700	0.0	1000.0					
0.800	970.9	1000.0	1.800	0.0	1000.0					
0.900	970.9	1000.0	1.900	0.0	1000.0					
0.901	421.2	1000.0	2.000	0.0	1000.0					
1 100	421.2 421.2		2.100	0.0	1000.0					
1.100	101.0	1000.0	2.200	0.0	1000.0					
	Hydro-Brake®) Optimu	m Outflow	Control						
	Unit	- Referen	TA MD-SHE-00	89-3800-1220	1-3800					
	Desig	n Head (r	n)	00 3000 IZZ0	1.220					
	Design	Flow (1/s	5)		3.8					
	5	Flush-Flo	⊃™	Calcu	lated					
		Objectiv	ve Minimise	upstream st	orage					
	P	Applicatio	on	Su	urface					
	Sump	Availab	Le		Yes					
	Dia	ameter (mr	n)		89					
	Invert	: Level (r	n)	-	-0.800					
Minimum	Uutlet Pipe Dia	ameter (mr	n)		150 1200					
- Duggeb			,		1200					
	Control Po	oints	Head (m)	Flow (l/s)						
I	Design Point (Ca	alculated) 1.220	3.8						
	1	Flush-Flo	™ 0.369	3.8						
n.	lean Flow over 1	Kick-Flo Head Para	® 0.755	3.0						
	iean riow over l	neau Raiig	-	3.3						
The hydrological calc	ulations have b	been based	d on the Hea	d/Discharge	relationship for the					
Hydro-Brake® Optimum	as specified.	Should a	nother type	of control d	levice other than a					
Hydro-Brake Optimum®	be utilised the	en these	storage rout	ing calculat	ions will be					
invalidated			-	-						

©1982-2018 Innovyze

DBFL Consulting Engineers							
Ormond House	Mixed Use Development at						
Upper Ormond Quay	1-4 East Road, Dublin 3						
Dublin 7		Mirro					
Date 18/11/2019	Designed by Irati Gutierrez	Desinado					
File 170200-WIN-001.SRCX	Checked by Nick Fenner	Diamage					
Innovyze	Source Control 2018.1	•					

Hydro-Brake® Optimum Outflow Control

Depth (m)	Flow (l/s)						
0.100	2.8	1.200	3.8	3.000	5.8	7.000	8.6
0.200	3.6	1.400	4.0	3.500	6.2	7.500	8.9
0.300	3.8	1.600	4.3	4.000	6.6	8.000	9.2
0.400	3.8	1.800	4.5	4.500	7.0	8.500	9.4
0.500	3.7	2.000	4.8	5.000	7.3	9.000	9.7
0.600	3.6	2.200	5.0	5.500	7.7	9.500	10.0
0.800	3.1	2.400	5.2	6.000	8.0		
1.000	3.5	2.600	5.4	6.500	8.3		

©1982-2018 Innovyze

Appendix C

TOPOGRAPHICAL SURVEY

			LEC	GEND						
	Street furniture & Services									
<u>5,12</u>	Over Head Wires (I LIA	(S) - Pylon	ESB	Sign 🔥 R	S Boad Si	an PF	Phone Box			
5,12	Flowerbed	BS O	Bus Sto	o − o⊕∵		Bench Se	at Duct			
<u>5,12</u>	Pipe	BD O	Bollard			Kiosk (GAS Gas Cover			
<u>5,12</u>	Lift	BEAO	Beacon	1	GY	Gully CP	Box C P Box			
<u>5,12</u>	Barrier	сн О	Coalho	le Cover U/C	G Vent	U/G Car F	Park Vent			
<u>5,12</u>	Pump	внО	Bore H	ole	BIN	Waste Bir	1			
<u>5,12</u>	Trial Pit	EP	Electric	ity Pole	HY	Hydrant				
<u>512</u>	Bus/Tram Shelter	TPO	Telegra	ph pole	FH	Fire Hydra	ant			
<u>5 12</u>	Postbox	ocs	OCS Po	ole E	ЕВОХ 📃	ESB Box				
\heartsuit	Valve - General	CP	CCTV	Camera Pole	ICE	ESB Inspe	ection Cover			
\odot	Water Valve	LP 'Or	Lamp F	Post	TFB	Traffic Co	ntrol Box			
Ø	Gas Valve	FMH	or 🔘 Fo	oul Manhole	LUAS	LUAS Teo	chnical Cubicle			
SV	Sluice Valve	SMH	or 🚫 Si	urface Water N	ин 🛄	Ticket Ver	nding Machine			
@V	Air Valve	мн	or 🔿 M	lanholes	WM	Water Me	ter Cover			
(SC)	Stop Cock	AC	Air Con	ditioning Vents	S ICT	Telecom I	nspection Cover			
PP O	C P Post		Service	s Inspection C	over	Monumer	nt / Toilets			
	Marker Post		Traffic I	nspection Cov	er	Tank Stor	age			
	Traffic light		Cable 1	V Inspection C		Basemen	t: MH, Cover & Pipe			
	Parking Meter		ESAT Ir	spection Cove	er NDA		ed Aeriai Mark			
	Smart Card Validator		Fircom	Inspection Cover			Protection			
0	Unknown Valve	RE)	Boddin	a Eve		Wash	nout			
0	Natu	ral Eog	aturo	3 -) -	Ŭ	G	olf			
5,12	Surface Change			> Water Level		FWAY	Eair Way			
5,12	Land Drain	-	CRWN	Crown Leve	el (GREE	Green			
5,12	Bottom of Slope	i	۰IL	Invert level		твох	Tee Box			
<u>5,12</u>	Top of Slope	+	- BL	Bed Level			thor			
<u>51</u> 2	Ditch	+		Spotheight	S1 /	A E: 1000.000				
5 <u>1</u> 2	Water Edge / Lake /	Pond			Z	H: 100.00	Photo point			
- ×	- Hedge / Trees Drip I	_ine / Vege	tation				r noto point			
攀	Tree Coniferous	6	Tree	Deciduous	*	Top of	Tree			
		_	Bui	t Feature	es					
		Roa	ıds &	Road M	arkings	6				
5,12		5	12 Fer	ice	+0,	00	Floor Level			
5 <u>1</u> 2	Edge of Road	G	ate Ga	te	*	-x 00	Apex Height			
	Kerb Bottom	5	¥ [∠] Hoa	ad Centreline	+ <u>6</u> ,	00	Eaves Height			
		<u>0</u> 5	12 Ho	o of wall	+ ^{P/}		Parapet Height			
0 12 5 10	Eridge Abutment	5	¥⊆ ⊓0 12 Pm	arung perty Line	+0.0		Step Level			
5 12 5 17	E Bridge Deck	5	¥⊆ ^{ГЮ} 12 Во	ad Scar	* _{5.}	12	Concrete Pad			
5 12 E 11	E Bridge Parapet	5	,12 To	a of Fence	5.	12	Track			
<u> 2,12</u>	 Building Façade 	<u> </u>	× ∸ '₩	5 011 0100		×				

 512
 Building Façade
 512
 Top of Fence
 512
 Track

 512
 Footpath / Platform Train & Tram
 512
 Wall / Retaining Wall

 512
 Damp Proof Course / Verge
 512
 Railway / Tram Rail / Grating / Ramp

 512
 Bridge Pier / Wall & Gate Pillar / LUAS Trackbed
 512
 Building Canopy / Roof / Overhang

 512
 Cycleway / Private Landing Area
 512
 Building Canopy / Roof / Overhang

Murphy Surveys Ltd. Disclaimer

The user or recipient of this survey data understands and acknowledges this data may be inaccurate or contain errors or omissions and the user or recipient assumes full responsibility for any risks or damages resulting from, arising from, or in connection with any use of or reliance upon data displayed herein. Although significant care has been exercised to produce surveys that satisfy survey accuracy standards, these surveys are only as accurate as the source data from which they were compiled. Although all reasonable steps have been taken to locate all features visible at the time of the survey, there is no guarantee that all will be shown on the drawing, as some aboveGround features may have obstructed the survey. Wherever possible, areas unable to be surveyed will be labelled as " UTS".

The Company shall not be liable for any inaccuracy of the data provided beyond the specified scale or accuracy, or for any matters resulting from their use for purposes other than that stated in the Contract. No liability shall attach to the Surveyor in respect of any consequential loss or damages suffered by the Client.

The Client must promptly notify the Company of any errors in mapping of which it becomes aware. If misleading, inaccurate or otherwise inappropriate information is brought to the Company's attention or the Company itself identifies any such imprecision or error in a survey, it shall use its reasonable endeavours to fix or remove it and if necessary in certain instances, the Company being on notice of any such misleading, inaccurate or otherwise inappropriate information, it will re-conduct the survey and reproduce the data to within the specified scale or accuracy.

	LEGEND								
Street furniture & Services									
512 Over Head Wires (LL	JAS) - Pylon ESB	S Road Sign PBOX Phone Bo							
$\frac{5.12}{\times}$ Flowerbed	BSO Bus Stop	Bench Seat Duct							
512 Pipe	BD O Bollard	Kiosk GAS Gas Cov							
5 <u>12</u> Lift	BEA O Beacon	GY Gully CPBox C P Box							
5.12 Barrier	CHO Coalhole Cover U/G	Vent U/G Car Park Vent							
512 Pump	BHO Bore Hole	BIN Waste Bin							
$\frac{5.12}{\times}$ Trial Pit	EP C Electricity Pole	HY Hydrant							
512 Bus/Tram Shelter	TP 🕐 Telegraph pole	FH Fire Hydrant							
$\frac{5.12}{\times}$ Postbox	OCS Pole	BOX ESB Box							
Valve - General	CP CCTV Camera Pole	ICE ESB Inspection Cover							
🧼 Water Valve	LP 🕂 Lamp Post	TFB Traffic Control Box							
🚱 Gas Valve	FMH or Foul Manhole	UAS LUAS Technical Cubicle							
Sluice Valve	SMH or Surface Water M	IH Ticket Vending Machine							
Nir Valve	MH 🔄 or 🔿 Manholes	WM Water Meter Cover							
Stop Cock	AC Air Conditioning Vents	ICT Telecom Inspection Cover							
PP 🔿 C P Post	ICU Services Inspection Co	over Monument / Toilets							
MK 🔿 Marker Post	ICTC Traffic Inspection Cove	er 📃 Tank Storage							
TL 🔿 Traffic light	ICTV Cable TV Inspection C	Cover 📃 Basement: MH, Cover & Pip							
M 🔿 Parking Meter	ICES ESAT Inspection Cove	er XDAM Dished Aerial Mark							
M 🔿 Plane Aerial Mark	ICNC NTL Inspection Cover	STAY Stay for pole							
CV O Smart Card Validator	FICEM Eircom Inspection Cov	ver +PP Pipe Protection							
W Unknown Valve	RE Rodding Eye	🧐 Washout							
Nat	ural Features	Golf							
5.12 Surface Change	WLVL Water Level	FWAY Fair Way							
$\frac{5.12}{\times}$ Land Drain	CRWN Crown Level	GREE Green							
Bottom of Slope	↓IL Invert level	TBOX Tee Box							
\xrightarrow{D} Top of Slope	+BL Bed Level	Other							
Ditch	+S Spotheight	S1							
Water Edge / Lake	/ Pond	Photo point							
Hedge / Trees Drip	Line / Vegetation	TOT							
Tree Coniferous	Tree Deciduous	🛞 Top of Tree							
	Duilt Easture	20							
	Boade & Boad M	zo arkinae							
5.12 Building	5.12 Fence								
5.12 Edge of Board	Gate Gate								
5.12 Kerb Bottom	5.12 Road Centreline	★0.00 LEV Faves Height							
5,12 Kerb Top	5J2 Top of Wall	L PAR Parapet Height							
		0.00							

.X ~	Kelb Bollom	~X ~	noad Gentreline	+0.00	Laves neight
5,12	Kerb Top	<u>5,12</u>	Top of Wall		Parapet Height
5,12	Bridge Abutment	<u>5,12</u>	Hoarding		Soffit Elevation
5,12	Bridge Deck	<u>5,12</u>	Property Line	¥ ^{STPL}	Step Level
512	Bridge Parapet	<u>5,12</u>	Road Scar	CONC	Concrete Pad
5,12	Building Façade	<u>5,12</u>	Top of Fence	5,12	Track
5 <u>1</u> 2	Footpath / Platform Train &	Tram	<u>5,12</u>	Wall / Retaining Wa	all
5,12	Damp Proof Course / Verge	Э	5,12	Railway / Tram Rai	I / Grating / Ramp

 512
 Bridge Pier / Wall & Gate Pillar / LUAS Trackbed
 512
 Building Canopy / Roof / Overhang

 512
 Cycleway / Private Landing Area

Murphy Surveys Ltd. Disclaimer

The user or recipient of this survey data understands and acknowledges this data may be inaccurate or contain errors or omissions and the user or recipient assumes full responsibility for any risks or damages resulting from, arising from, or in connection with any use of or reliance upon data displayed herein. Although significant care has been exercised to produce surveys that satisfy survey accuracy standards, these surveys are only as accurate as the source data from which they were compiled. Although all reasonable steps have been taken to locate all features visible at the time of the survey, there is no guarantee that all will be shown on the drawing, as some aboveGround features may have obstructed the survey. Wherever possible, areas unable to be surveyed will be labelled as " UTS".

The Company shall not be liable for any inaccuracy of the data provided beyond the specified scale or accuracy, or for any matters resulting from their use for purposes other than that stated in the Contract. No liability shall attach to the Surveyor in respect of any consequential loss or damages suffered by the Client.

The Client must promptly notify the Company of any errors in mapping of which it becomes aware. If misleading, inaccurate or otherwise inappropriate information is brought to the Company's attention or the Company itself identifies any such imprecision or error in a survey, it shall use its reasonable endeavours to fix or remove it and if necessary in certain instances, the Company being on notice of any such misleading, inaccurate or otherwise inappropriate information, it will re-conduct the survey and reproduce the data to within the specified scale or accuracy.

Appendix D

IRISH WATER RECORDS

UISCE ÉIREANN : IRISH WATER

Legend

Ley	5110				
M	Boundary Meter				
M	Check Meter				
M	Unknown Meter ; Other Met	ter			
\checkmark	PRV				
\bowtie	Sluice Valve Open				
м	Sluice Valve Closed				
X	Butterny valve Open				
M	Sluice Valve Closed				
*	Scour Valves				
**	Double Air Control Valve				
Water	Hydrants				
	Fire Hydrant				
•					
×	Telemetry Klosk				
	Сар				
•	Other Fittings				
Water	Distribution N	lains			
	y - Irish Water				
	Irich Water				
C					
Manhole					
•	Standard				
۲ ۴ .	Hatchbox				
LH	Lamphole				
• Sowo	r Dicabarga Da	into			
Discharge		///115			
o	Other; Unknown				
	Pump Station				
Sewe	r Inlets				
Inlet Type	,				
CP	Catchpit				
	Gravity - Combined				
	· Gravity - Foul				
	Gravity - Overflow				
	Pumping - Combined				
_	· Pumping - Foul				
	Syphon - Overflow				
Storm	Manholes				
Manhole	Туре				
•	Standard				
	Surface Gravity Mains				
→	 Surface Gravity Mains Priva 	ate			
Surfa	ce Fittings				
Fitting Ty					
U	Other, Onknown				
	1.1 000			L act adited	-
	1.1,000	al AU		13/04/2018	- }
					-
		Met	res		
	0 2	25 50)	100	
lo part of the second s	nis drawing may be repr nature without the writt on the project for whice	roduced or tran en permission h the documen	smitted in any for of Irish Water as o t was originally is	m or stored in any re copyright holder exce sued.	trieval pt as
/hilst every	/ care has been taken i	n its compilatio	n, Irish Water give	es this information as	to the
ition of its i he best av Water cai cerning the ept any lial	anderground network as ailable information prov n assume no responsib accuracy, completene pility whatsoever arising	s a general guid vided by each L ility for and give ss or up to date g from anv error	de only on the stri ocal Authority in I e no guarantees, i e nature of the info rs or omissions.TI	ct understanding that reland to Irish Water. undertakings or warra ormation provided an his information should	t it is base anties d does no d not be
a Water und Water und Water und	the event of excavation derground network. The re the exact location of	e onus is on the the Irish Water	works being carrie parties carrying underground net	ed out in the vicinity of out excavations or an work is identified prior	of the ny other r to

excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

© Copyright Irish Water

© Ordnance Survey Ireland Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

Appendix E

IRISH WATER CONFIRMATION OF FEASBILITY & STATEMENT OF DESIGN ACCEPTANCE Nick Fenner Ormond House Upper Ormond Quay Dublin 7

11 September 2018

Dear Sir/Madam,

Re: Customer Reference No 0356794551 pre-connection enquiry - Subject to contract | Contract denied [Connection for 520 domestic units]

Irish Water has reviewed your pre-connection enquiry in relation to

water and wastewater connections at 1-3 East Road, East Wall, Dublin

Based upon the details you have provided with your pre-connection enquiry and on the capacity currently available as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network can be facilitated.

Water:

In order to accommodate the proposed connection at the Premises, upgrade works are required to provide a connection from the 24" trunk watermain on East Wall Road into the adjacent 12" distribution watermain. This connection will require a PRV to be installed. An existing 150mm connection to the 24" trunk watermain exists at the junction of East Wall Road and the entrance to the Port Tunnel that could possibly be used. Further investigation of the viability of this existing connection will be required at connection stage. Further testing of the network will be required following the installation of the above arrangement to ensure sufficient water supply to the development and to determine if further upgrades are necessary. Irish Water does not currently have any plans to carry out the works required to provide the necessary upgrade and capacity. Should you wish to have such upgrade works progressed, please contact Irish Water to discuss this further.

This Confirmation of Feasibility to connect to the Irish Water infrastructure also does not extend to your fire flow requirements. Please note that Irish Water can not guarantee a flow rate to meet fire flow requirements and in order to guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development.

Wastewater:

In order to accommodate the proposed connection at the Premises the network requires reconfiguration works in the vicinity of the East Road Pumping station. Currently Irish Water is doing a survey of the network and details of the required reconfiguration will be known by the end of 2018 after the survey. Currently the works are not on Irish Water Capital Investment Plan.

There is a combined wastewater system in the area. The development has to incorporate Sustainable Drainage Systems/ Attenuation in the management of stormwater and to reduce surface water inflow into the combine sewers. Full details of these have to be agreed with Dublin City Council Drainage Division.

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

C. In advance of submitting this development to An Bord Pleanala for full assessment, the Developer is required to have entered into a Project Works Services Agreement to deliver infrastructure upgrades to facilitate the connection of the development to Irish Water infrastructure.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Utility Regulation.

If you have any further questions, please contact Marina Byrne from the design team on 018925991 or email mzbyrne@water.ie. For further information, visit **www.water.ie/connections**

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Jerry Grant, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghniomhaiochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363 Nick Fenner, DBFL, Ormond House, Upper Ormond Quay, Dublin 7

3 April 2019

Re: Design Submission for SHD Development at 1-3 East Road, East Wall, Dublin(the "Development") (the "Design Submission") / 0356794551.

Dear Nick,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU) (<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water Representative

Name:Marina ByrnePhone:018925991Email:mzbyrne@water.ie

Yours sincerely,

M Brugge

Maria O'Dwyer Connections and Developer Services

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448 South City Delivery Office Cork City

www.water.ie

Appendix A

Document Title & Revision

- 170200-3000 Revision C Site Services Layout
- 170200-3001 Revision B Watermain Layout

Standard Details/Code of Practice Exemption: N/A

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the</u> <u>Self-Lay Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix F

FOUL CALCULATIONS

DBFL Consulting Engineers		Page 1
Ormond House	170200	
Upper Ormond Quay	East Road	
Dublin 7	Dublin 3	Micco
Date 17/04/2019	Designed by MSS	
File Foul.mdx	Checked by NJF	Diginada
Innovyze	Network 2018.1	
-		
FOU	L SEWERAGE DESIGN	
Desig	n Criteria for Foul	
Pipe Sizes ST	ANDARD Manhole Sizes STANDARD	
Industrial Flow (l/s/ha) 0	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor 0	0.00 Minimum Backdrop Height (m) 0.2	00
Calculation Method EN	752 Maximum Backdrop Height (m) 1.5	00
Frequency Factor U	0.50 Min Design Depth for Optimisation (m) 1.2 0.00 Min Vel for Auto Design only (m/s) 0.1	00 75
Domestic Peak Flow Factor 6	5.00 Min Slope for Optimisation (1:X) 5	00
Design	ned with Level Soffits	
Network	Design Table for Foul	
PN Length Fall Slope Area Un	its Base k HYD DIA Section Type	Auto
(m) (m) (1:X) (ha)	Flow $(1/s)$ (mm) SECT (mm)	Design
F1.000 25.816 0.156 165.5 0.000 23	38.0 0.0 0.600 o 150 Pipe/Conduit	A
F1.001 21.220 0.236 89.9 0.000	0.0 0.0 0.600 o 150 Pipe/Conduit	ě
		•
F2.000 23.776 0.392 60.7 0.000 2.	24.0 0.0 0.600 6 150 Pipe/Conduit	٠
F1.002 74.842 0.377 198.5 0.000	0.0 0.0 0.600 o 225 Pipe/Conduit	0
F1.003 14.409 0.106 135.9 0.000 27	30.0 0.0 0.600 o 225 Pipe/Conduit	۵.
F3.000 42.233 0.226 186.9 0.000 6	72.0 0.0 0.600 o 225 Pipe/Conduit	۵
F3.001 23.036 0.095 242.5 0.000 2	10.0 0.0 0.600 o 225 Pipe/Conduit	ă
F3.002 18.173 0.324 56.1 0.000	0.0 0.0 0.600 o 225 Pipe/Conduit	è
F4 000 16 766 0 140 119 8 0 000 2	24.0 0.0.600 o 150 Pipe/Conduit	۵
F4.001 6.875 0.057 120.6 0.000	0.0 0.0 0.600 o 150 Pipe/Conduit	
	-	-
Netw	vork Results Table	
PN US/IL Σ Area Σ Base (m) (ha) Elev (1/2)	Σ Units Add Flow P.Dep P.Vel Vel Cap Flo	ow (a)
		8)
F1.000 -0.050 0.000 0.0	238.0 0.0 80 0.80 0.78 13.8 7	1.7
F1.001 -0.206 0.000 0.0	238.0 0.0 67 1.01 1.06 18.7 7	1.7
F2.000 -0.050 0.000 0.0	224.0 0.0 59 1.16 1.29 22.9 7	7.5
F1.002 -0.517 0.000 0.0	462.0 0.0 83 0.80 0.92 36.8 10).7
F1.003 -0.894 0.000 0.0	3192.0 0.0 130 1.18 1.12 44.5 28	3.2
F3.000 -0.355 0.000 0.0	672.0 0.0 91 0.87 0.95 37.9 13	3.0
F3.001 -0.581 0.000 0.0	882.0 0.0 105 0.81 0.84 33.2 14	1.8
F3.002 -0.676 0.000 0.0	882.0 0.0 70 1.40 1.75 69.6 14	1.8

F4.000 -0.050 0.000 F4.001 -0.190 0.000 0.0224.00.0720.900.9216.27.50.0224.00.0720.900.9116.17.5

©1982-2018 Innovyze

DBFL Consulting Engineers										Page 2	
Ormond House					170	200					
Upper Ormond	Quay				Eas	st Road					
Dublin 7					Duk	olin 3					Micro
Date 17/04/20	19				Des	signed by	MSS				
File Foul.mdx					Che	ecked by N	JF				Diamaye
Innovyze					Net	work 2018	.1				1
PN	<u>Network Design Table for Foul</u> PN Length Fall Slope Area Units Base k HYD DIA Section Type						Auto				
	(m)	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT	(mm)		Design
F4.002	29.010	0.244	118.9	0.000	0.0	0.0	0.600	0	150	Pipe/Conduit	۵
F4.003	15.554	0.139	111.9	0.000	1190.0	0.0	0.600	0	225	Pipe/Conduit	ě
F4.004	14.752	0.077	191.6	0.000	2352.0	0.0	0.600	0	225	Pipe/Conduit	
F4.005	26.901	0.219	122.8	0.000	0.0	0.0	0.600	0	225	Pipe/Conduit	<u> </u>
F1.004	30.578	0.141	216.9	0.000	0.0	0.0	0.600	0	300	Pipe/Conduit	è
F1.005	24.677	0.124	199.0	0.000	0.0	0.0	0.600	0	300	Pipe/Conduit	U

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
F4.002	-0.247	0.000	0.0	224.0	0.0	71	0.90	0.92	16.3	7.5
F4.003	-0.566	0.000	0.0	1414.0	0.0	96	1.16	1.24	49.1	18.8
F4.004	-0.704	0.000	0.0	3766.0	0.0	155	1.05	0.94	37.4	30.7
F4.005	-0.781	0.000	0.0	3766.0	0.0	133	1.25	1.18	46.9	30.7
F1.004	-1.075	0.000	0.0	7840.0	0.0	166	1.11	1.06	75.2	44.3
F1.005	-1.216	0.000	0.0	7840.0	0.0	161	1.14	1.11	78.5	44.3

DBFL Consulting Engineers	Page 3	
Ormond House	170200	
Upper Ormond Quay	East Road	
Dublin 7	Dublin 3	Micro
Date 17/04/2019	Designed by MSS	
File Foul.mdx	Checked by NJF	Diamage
Innovyze	Network 2018.1	1

	Manhole Schedules for Foul											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)	
F6	0.700	0.750	Open Manhole	1200	F1.000	-0.050	150					
F5	0.700	0.906	Open Manhole	1200	F1.001	-0.206	150	F1.000	-0.206	150		
FB4	0.700	0.750	Open Manhole	1200	F2.000	-0.050	150					
F4	0.620	1.137	Open Manhole	1200	F1.002	-0.517	225	F1.001	-0.442	150		
								F2.000	-0.442	150		
F3	0.640	1.534	Open Manhole	1200	F1.003	-0.894	225	F1.002	-0.894	225		
F2-3	0.620	0.975	Open Manhole	1200	F3.000	-0.355	225					
F2-2	0.600	1.181	Open Manhole	1200	F3.001	-0.581	225	F3.000	-0.581	225		
F2-1	0.650	1.326	Open Manhole	1200	F3.002	-0.676	225	F3.001	-0.676	225		
FB8	0.700	0.750	Open Manhole	1200	F4.000	-0.050	150					
FB7	0.700	0.890	Open Manhole	1200	F4.001	-0.190	150	F4.000	-0.190	150		
FB6	0.700	0.947	Open Manhole	1200	F4.002	-0.247	150	F4.001	-0.247	150		
FB5	0.700	1.266	Open Manhole	1200	F4.003	-0.566	225	F4.002	-0.491	150		
F1-2	0.650	1.355	Open Manhole	1200	F4.004	-0.704	225	F4.003	-0.705	225		
F1-1	0.650	1.431	Open Manhole	1200	F4.005	-0.781	225	F4.004	-0.781	225		
F1	0.640	1.715	Open Manhole	1200	F1.004	-1.075	300	F1.003	-1.000	225		
								F3.002	-1.000	225		
								F4.005	-1.000	225		
F0-01	0.330	1.546	Open Manhole	1200	F1.005	-1.216	300	F1.004	-1.216	300		
FO	0.270	1.610	Open Manhole	1200		OUTFALL		F1.005	-1.340	300		

©1982-2018 Innovyze

DBFL Consulting Engineers		Page 4
Ormond House	170200	
Upper Ormond Quay	East Road	
Dublin 7	Dublin 3	Micro
Date 17/04/2019	Designed by MSS	
File Foul.mdx	Checked by NJF	Diamage
Innovyze	Network 2018.1	.4

PIPELINE SCHEDULES for Foul

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	0	150	F6	0.700	-0.050	0.600	Open Manhole	1200
F1.001	0	150	F5	0.700	-0.206	0.756	Open Manhole	1200
F2.000	0	150	FB4	0.700	-0.050	0.600	Open Manhole	1200
F1.002	0	225	F4	0.620	-0.517	0.912	Open Manhole	1200
F1.003	0	225	F3	0.640	-0.894	1.309	Open Manhole	1200
F3.000	0	225	F2-3	0.620	-0.355	0.750	Open Manhole	1200
F3.001	0	225	F2-2	0.600	-0.581	0.956	Open Manhole	1200
F3.002	0	225	F2-1	0.650	-0.676	1.101	Open Manhole	1200
F4.000	0	150	FB8	0.700	-0.050	0.600	Open Manhole	1200
F4.001	0	150	FB7	0.700	-0.190	0.740	Open Manhole	1200
F4.002	0	150	FB6	0.700	-0.247	0.797	Open Manhole	1200
F4.003	0	225	FB5	0.700	-0.566	1.041	Open Manhole	1200
F4.004	0	225	F1-2	0.650	-0.704	1.129	Open Manhole	1200
F4.005	0	225	F1-1	0.650	-0.781	1.206	Open Manhole	1200
F1.004	о	300	Fl	0.640	-1.075	1.415	Open Manhole	1200
F1.005	0	300	F0-01	0.330	-1.216	1.246	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH Name	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	()	()	mane	()	()	()	0011100001011	()
F1.000	25.816	165.5	F5	0.700	-0.206	0.756	Open Manhole	1200
F1.001	21.220	89.9	F4	0.620	-0.442	0.912	Open Manhole	1200
							-F	
F2.000	23.776	60.7	F4	0.620	-0.442	0.912	Open Manhole	1200
							1	
F1.002	74.842	198.5	F3	0.640	-0.894	1.309	Open Manhole	1200
F1.003	14.409	135.9	F1	0.640	-1.000	1.415	Open Manhole	1200
							-	
F3.000	42.233	186.9	F2-2	0.600	-0.581	0.956	Open Manhole	1200
F3.001	23.036	242.5	F2-1	0.650	-0.676	1.101	Open Manhole	1200
F3.002	18.173	56.1	Fl	0.640	-1.000	1.415	Open Manhole	1200
F4.000	16.766	119.8	FB7	0.700	-0.190	0.740	Open Manhole	1200
F4.001	6.875	120.6	FB6	0.700	-0.247	0.797	Open Manhole	1200
F4.002	29.010	118.9	FB5	0.700	-0.491	1.041	Open Manhole	1200
F4.003	15.554	111.9	F1-2	0.650	-0.705	1.130	Open Manhole	1200
F4.004	14.752	191.6	F1-1	0.650	-0.781	1.206	Open Manhole	1200
F4.005	26.901	122.8	Fl	0.640	-1.000	1.415	Open Manhole	1200
F1.004	30.578	216.9	F0-01	0.330	-1.216	1.246	Open Manhole	1200
F1.005	24.677	199.0	FO	0.270	-1.340	1.310	Open Manhole	1200
				©1982-	2018 Ir	novyze		

DBFL Consulting Engineers		Page 5
Ormond House	170200	
Upper Ormond Quay	East Road	
Dublin 7	Dublin 3	Micro
Date 17/04/2019	Designed by MSS	Desinado
File Foul.mdx	Checked by NJF	Dialitage
Innovyze	Network 2018.1	*

Area Summary for Foul

Pipe	Gross	Pipe Total
Number	Area (ha)	(ha)
1.000	0.000	0.000
1.001	0.000	0.000
2.000	0.000	0.000
1.002	0.000	0.000
1.003	0.000	0.000
3.000	0.000	0.000
3.001	0.000	0.000
3.002	0.000	0.000
4.000	0.000	0.000
4.001	0.000	0.000
4.002	0.000	0.000
4.003	0.000	0.000
4.004	0.000	0.000
4.005	0.000	0.000
1.004	0.000	0.000
1.005	0.000	0.000
	Total	Total
	0.000	0.000

Free Flowing Outfall Details for Foul

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
F1.005	FO	0.270	-1.340	0.000	1200	0

Appendix G

DCC PRE-APP COMMENT RESPONSES This document has been created to demonstrate how Dublin City Councils comments have been addressed from the original pre-planning application. The original DCC comments can be found in the left column while the response and explanation of how the design has been amended is shown on the right.

	DCC Comment	Application Response
	ROADS DEPARTMENT	
1	The proposed 3no. on street car parking spaces, 2no. on the west side of East Road and the 3rd on Church Road should be removed as part of the proposal.	Noted, these 3 spaces have been removed and can be seen on updated DBFL drawing 170200-2000.
2	The applicant is requested to provide details on the proposed servicing arrangements, this should ensure that refuse collection does not conflict with normal vehicular movements at the access points to the undercroft. The types of service vehicle should also be clearly legible on the submitted drawings.	As part of the servicing strategy the external vehicle area has been designed to accommodate all types of anticipated service vehicles. For the retail/commercial aspects of the development it is expected that deliveries will be the most frequent vehicles, and a set down layby has been provided (15.5m long by 2.7m wide) to accommodate these. The management company of the development will enforce restrictions for this set down area to ensure the area is available for the required servicing of the development. The proposed road layout and hard landscaping areas have been tracked to demonstrate that the site's proposed corner radii and turning heads will accommodate everyday vehicles such as normal delivery and cars. Other vehicles such as refuse trucks and fire tender have been tracked to ensure they can turn and manoeuvre around the development (refer to DBFL Drawings 170200-2003). The types of service vehicle have been clearly annotated on the updated drawings. As part of the refuse strategy detailed in the Operational Waste Management Strategy, the refuse collection point will be located adjacent to block D1 by the set down area. This will allow refuse vehicles to enter the development, turn in in the external vehicle area and use the set down layby to collect the refuse while keeping the entrance and exit routes clear. As per the Operational Waste Management Strategy, it will be the development's management company that will ensure all refuse is moved from the waste storage areas to the refuse collection point. More details of the refuse strategy can be found in the Operation Management Strategy included with the planning application.

3	The applicant shall identify the areas to be Taken in Charge by Dublin City Council.	 A drawing has been created to clearly identify the areas to be Taken in Charge. This consists of 3 defining areas as follows: Private frontage to commercial developments on East Road Taken in charge area (covering area that is currently owned by the applicant) Works in DCC lands for Junction upgrade Please refer to drawing 170200 – 2002.
4	The applicant shall submit confirmation from a Car Club provider confirming commitment of a car share scheme for the development. The location of the car club parking spaces shall be clearly indicated on the associated drawings	A letter from GoCar has been included in appendices of the Infrastructure Design Report and the Traffic and Transportation Assessment. This indicates GoCar would like to include 3 car club spaces for the development. The location of Car club spaces have been labelled on drawing 170200- 2001
5	A detailed Car Parking Management Plan shall be submitted which includes details as to how car parking spaces will be allocated and managed on an on-going basis.	A Development Management Plan by Aramark has been lodged as part of the application which will detail how car parking spaces are allocated and managed as part of the development.
6	A cycle parking management plan, indicating how bicycle parking shall be kept secure and accessible, shall be submitted. A key/fob access is required to bicycle compounds and cycle parking shall allow both wheel and frame be locked to the parking stand.	A Development Management Plan by Aramark has been lodged as part of the application which will detail how cycle parking is secure and accessible.

	DCC Comment	Application Response
	DRAINAGE DEPARTMENT	
7	Revised surface water storage calculations shall be submitted to account for 20% climate change as per the "Dublin City Development Plan 2016-2020 Strategic Flood Risk Assessment".	All surface water calculations have been revised to account for 20% climate change allowance and the drawings have been updated to reflect the change in required volume within the system.
8	 The developer shall carry our further flood risk assessment for the proposed development: Assuming a one year high tide event during 100 year rainfall event The impact of 20% Climate Change as outlined in the "Dublin City Development Plan 2016-2020 Strategic Flood Risk Assessment". 	A section in the SSFRA has been added under exceedance events to clarify this, and the further assessment has been summarised below. It must be noted the surface water runoff for the area drains to a combined system and flows to the East Road Pumping station south of the development. As the combined drainage is pumped at this point, the site's drainage network is not tidally influenced and the drainage infrastructure around the development should flow freely in the case of a high tide. To further analyse this scenario, in the unlikely case the infrastructure does become tidal locked. There would be sufficient storage within the development's attenuation system to ensure flooding would not occur in the 1% AEP rainfall event. Reviewing the drainage calculations, the development requires 992m3 of storage for the 2160min duration 1% AEP event which includes for 20% climate change. Taking a worst-case scenario that the drainage infrastructure could be tide locked for 8 hours, it can be noted that the total discharge volume from shorter storm durations of the 1% AEP event are smaller than the attenuation volume required for the 2160min duration storm event. It is evident the developments drainage system is capable of storing up to a 10hour storm (for the 0.1%AEP event + 20% Climate change) with no discharge leaving site.